Performance of Five Different Assays for the Quantification of Viral Load in Persons Infected With Various Subtypes of HIV-1

*Philippe Bürgisser, †Pietro Vernazza, ‡Markus Flepp, §Jürg Böni, §Zuzana Tomasik, §Urs Hummel, ‖Giuseppe Pantaleo, Jörg Schüpbach, and the Swiss HIV Cohort Study

*Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne; †Department of Medicine, Kantonsspital, St. Gallen; ‡Division of Infectious Diseases and Hospital Hygiene, Universitätsspital, Zurich; §Swiss National Center for Retroviruses, University of Zurich, Zurich; and ‖Laboratory of AIDS Immunopathology, Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

Summary: Five methods for the assessment of plasma viral load (VL) were evaluated in 103 seropositive patients infected with various subtypes of HIV-1. The methods included three RNA-based assays (Amplicor Monitor 1.5, Quantiplex version 2.0, NucliSens), one ultrasensitive reverse transcriptase (PERT) assay and one “boosted” p24 antigen (Ag) enzyme immunoassay (EIA). Subtyping was based on sequencing in env. The sensitivities were, in decreasing order, Amplicor > PERT > p24 Ag > NucliSens > Quantiplex. The low sensitivity of NucliSens was related to the missing of several non-B (A, E, F, G) or recombinant strains, whereas that of Quantiplex did not depend on subtype. In the 1 group O sample and 4 group M samples, only PERT assay or p24Ag EIA produced a positive result. In the quantitative range, correlation was best between Amplicor and Quantiplex ($r = 0.8848$), fair between Amplicor and NucliSens ($r = 0.7064$) or PERT assay ($r = 0.7266$), lowest between Amplicor and p24Ag EIA ($r = 0.3989$). Amplicor underestimated VL in 1 subtype E sample. Thus, Amplicor performed best in terms of sensitivity (compared with all other assays) and accuracy (compared with NucliSens, PERT assay, and p24Ag) for non-B subtypes in group M samples. PERT assay appears useful for VL assessment in infections by group O or other highly divergent viruses. Key Words: HIV-1 subtypes—Viral load—Amplicor—Quantiplex—NucliSens—PERT assay—p24 antigen.

Accurate viral load (VL) determination is of prime importance in the management of HIV infection. Even so, amplification techniques used to measure VL in plasma, at least in their original version, often missed HIV-1 RNA or underestimated its concentration in patients infected with non-B subtypes of HIV-1 (1). This has been the case with version 1.0 of the Amplicor HIV-1 Monitor assay (Roche Diagnostics, Rotkreuz, Switzerland) for subtypes A, E, F, G and H (2–5) and with the NASBA HIV-1 RNA QT assay (Organon Teknika, Turnhout, Belgium) for subtypes A, E, G, and H (5–7). Even a branched-DNA technique, Quantiplex HIV-1 RNA version 2.0 (Chiron Diagnostics AG, Dietlikon, Switzerland), long thought to correctly quantify RNA from all subtypes of group M owing to the use of >40 probes spread over 2590 nucleotides of the conserved pol gene (8), has recently been shown to have missed RNA of a multirecombinant strain (9). Here, we have evaluated the performance of newer versions of the HIV-1 RNA target or signal amplification techniques mentioned earlier, as well as the performance of an experimental ultrasensitive reverse transcriptase (RT) assay and that of a “boosted” p24 antigen (Ag) enzyme immu-
Patients and Samples

In this study, 103 HIV-1-seropositive subjects presumed to have acquired HIV infection in areas of the world (sub-Saharan Africa or Thailand) where non-B subtypes predominate were recruited from the Swiss HIV Cohort Study centers. This selection included both untreated (n = 31) and treated (n = 72) patients.

Plasma, prepared from ethylenediaminetetraacetic acid (EDTA)-anticoagulated blood and frozen at −80°C within 6 hours of collection, was used for HIV-1 RNA determination by three techniques and for the PERT assay. A second tube of EDTA-anticoagulated blood was used to separate peripheral blood mononuclear cells (PBMC, for subtyping) from plasma (for p24 Ag determination) by centrifugation on a Ficoll-Hypaque density gradient within 24 hours of collection.

HIV-1 RNA Assays

HIV-1 RNA levels were determined by reverse transcription–polymerase chain reaction (RT-PCR, Amplicor HIV-1 Monitor version 1.5, Roche Diagnostics) (3,10), branched DNA (bDNA) signal amplification assay (Quantiplex HIV-1 RNA version 2.0, Chiron Diagnostics AG) (8), and transcription-based RNA amplification (NucliSens HIV-1 RNA QT, Organon Teknika AG, Pfäffikon, Switzerland) (11). In the conditions used, the lower detection level as stated by the manufacturer ranged generally between 100 and 400 copies/ml (Amplicor and NucliSens), whereas that of Quantiplex was constant at 500 copies/ml. A few samples with undetectable RNA by the standard Amplicor assay were reanalyzed using a supersensitive version of the assay (version 1.5) and 1.0 ml of plasma (12). The lower detection limit was −10 copies/ml.

Ultrasensitive Reverse Transcriptase Assay

The product-enhanced reverse transcriptase (PERT) assay was performed as previously described (13,14), with some modifications. Briefly, thawed plasma was diluted fivefold with phosphate-buffered saline (PBS), filtered through 0.2-μm filters after which 1 ml was used for virus sedimentation with 20,000 x g at 4°C for 60 minutes in a microfuge. The pellet was resuspended in 50 μl PBS. The RT reaction was carried out in duplicate with 10 μl resuspended virus in a total reaction volume of 30 μl at 37°C for 90 minutes. After heat inactivation of the enzyme, template RNA was degraded by RNase A digestion (400 ng) at 45°C for 45 minutes. Subsequent amplification for 40 cycles in a total reaction volume of 55 μl was performed on a ABI7700 Sequence Detector (Perkin Elmer Biosoistems, Norwalk, CT, U.S.A.) using a FAM-labeled TaqMan probe (FAM-5'-CGAGACGCTAC-CATGGCTATCGCT-3’-TAMRA). For quantitation of RT, a dilution series of recombinant HIV-1 RT (Roche Molecular Biochemicals, Rotkreuz, Switzerland) was used to generate an external standard curve. Anti-RT antibody-dependent inhibition of the assay was assessed by testing each sample a second time in the presence of 50 μU/ml of recombinant HIV-1 RT. Inhibition was calculated as follows:

\[
\% \text{ inhibition} = \frac{100 \times (1 - \frac{\text{activity}_{\text{sample}} + \text{RT}}{\text{activity}_{\text{PBS}} + \text{RT}})}{\text{activity}_{\text{PBS}} + \text{RT}} - \frac{\text{activity}_{\text{PBS}}}{\text{activity}_{\text{PBS}}} \]

Activities were corrected for inhibition if they were at least four times higher than that of the PBS control and inhibition did not exceed 95%. Otherwise, specimens were scored as failures. The cutoff of this modified assay for positivity was 22 nU/ml of recombinant HIV-1 RT.

“Boosted” p24 Antigen (p24 Ag) Enzyme Immunoassay

Immune complexes were first dissociated by heat denaturation. Next, p24 Ag was quantified using an HIV-1 p24 EIA and a tyramide-based signal amplification technique as described by Nadal et al (15). Briefly, 100 μl plasma was diluted with 500 μl 0.5% Triton X-100 in 1.5-ml Eppendorf tubes, denatured by heating at 100°C for 5 minutes on a Techne (Cambridge, U.K.) dry heat block and tested in duplicate with the NE/DuPont HIV-1 Core Profile enzyme-linked immunosorbent assay (ELISA) in combination with the ELAST ELISA amplification system (both purchased from NEN Life Science Products, Geneva, Switzerland). The cutoff level for positivity in diagnostic testing was determined for each assay plate by calculating the mean absorbance of 8 HIV-1-negative controls run on the same plate plus five standard deviations (SD). For quantification, a cutoff corresponding to the mean plus three SD was used. Absorbance was read using a Dynatech MR5000 ELISA reader (Microtech Produkte, Embrach, Switzerland). Antigen was quantified with a kinetic analysis using the Quanti-Kit Detection System (DL3, Diagnostica Ligure srl, Genoa, Italy). This allowed quantification in a range from ~500 to 6,250,000 fg/ml with a single sample dilution.

Subtyping

DNA was extracted from peripheral blood mononuclear cells (PBMC) and a 0.7-kb amplicon including regions V3-V5 of gp120 env was produced by nested PCR using primers ED5/ED12 and ES7/ES8 (16). This amplicon was sequenced and subtyped as described (17). Possible virus recombinants were detected by the HIV-1 subtyping tool of the National Center for Biotechnology Information (NCBI, Bethesda, MD, U.S.A). PBMC from 1 asymptomatic Cameroonian patient, with a blood CD4+ T-cell level of 327 cells/μl, was negative for proviral DNA by PCR for subtyping. This patient was suspected to have been infected with a subtype O strain on the basis of serology (HIV-1 Western blot, faint gp160 and gp34 env bands but strong gag [p24, p55] and pol [p32, p51, p66] bands; indeterminate HIV-2 Western blot with gag and pol, but no env bands) and absence of detectable plasma HIV-1 RNA (Amplicor). On coculture of her PBMC, high PERT values but no HIV-1 RNA were measured in the supernatant. The R/U region of the viral RNA was amplified from culture supernatant using a procedure developed for the identification of unknown retroviruses and the product was identified as representing subtype O by sequencing (18).

RESULTS

Polymerase chain reaction for subtyping, performed in 100 study subjects, was successful in 92. Of these, 34
were found to be infected with subtype A, 16 with B, 12 with C, 7 with D, 10 with E, 1 with F, and 1 with G. In the remaining 11, the amplified env sequence showed evidence for intersubtype recombination A/C/A (n = 4), and 1 case each of A/E/A, C/A, B/F, G/E/G, H/A/H, H/C/H, and predominantly F). In addition, 1 patient was found to be infected with a strain belonging to group O as detailed in Materials and Methods.

The sensitivity of the assays is shown in Table 1. Only those specimens (n = 83) that could be tested with all five assays were considered; of the remaining 20 samples, 11 failed in the PERT assay and 9 had insufficient volume. VL was undetectable by any method in 28 specimens, as a result of efficient antiretroviral treatment. Results with the remaining samples demonstrated considerable differences in the sensitivity of the five assays (Table 1). Stratifying the results according to treatment status produced little change in the relative sensitivity of the assays (Table 1). No HIV RNA was detectable in the group O sample by any of the three methods, but a positive signal was measured by both PERT assay and p24 Ag EIA (Fig. 1).

Samples positive by Amplicor but negative by Quantiplex all contained <8000 copies/ml according to Amplicor, and included 4 with >400 copies/ml, which belonged to subtype B (Fig. 1A). In contrast, several samples positive by Amplicor but negative by NucliSens contained high VL according to Amplicor (Fig. 1B). All NucliSens-negative samples with >400 copies/ml (Amplicor) and known sequence contained viruses that belonged to non-B subtypes (A, E, F, G) or were recombinant in env (A/C/A, B/F, G/E/G) (Fig. 1B). Samples missed by the PERT assay all contained <4000 copies/ml (Amplicor) and included 2 with subtype B strains (Fig. 1C). These 2 subtype B strains were detected by p24 Ag EIA. Specimens missed by the p24 Ag EIA all contained <40,000 copies/ml (Amplicor), with only non-B subtypes represented in the range between 1000 and 40,000 copies/ml (Fig. 1D).

Among 14 samples with low copy levels (<400 copies/ml) in the Amplicor assay, a few were reactive in either the PERT assay or the p24 Ag EIA (Fig. 1C and 1D). In addition, 2 group M specimens (1 subtype A, 1 with an undetermined subtype in a Thai patient) were reactive in the PERT assay but tested negative by all other techniques (Fig. 1C). Similarly, 3 group M specimens (2 subtype A, 1 H/A/H) were reactive in the p24 Ag EIA only (Fig. 1D). These 5 samples were retested using a supersensitive version of Amplicor 1.5. The results were as follows: 61 copies/ml, and RNA present but in concentrations <10 copies/ml in the 2 PERT-positive samples, respectively; 35 copies/ml, no RNA detectable, and 26 copies/ml in the 3 p24 Ag-positive samples, respectively.

Spearman correlation coefficients between VL values in the quantitation range of each method are depicted in Figure 1. The correlation was best between Quantiplex and Amplicor (r = 0.8848; p < .0001). However, VL values measured by Quantiplex were on the average 0.75 log₁₀ lower than that measured by Amplicor. The correlation was fair between NucliSens (r = 0.7064; p < .0001) and Amplicor, as well as between PERT assay (r = 0.7266; p < 0.0001) and Amplicor. It was lowest between p24 Ag EIA and Amplicor (r = 0.3989; p = 0.024). In the Quantiplex versus Amplicor plot (Fig. 1A), 1

<table>
<thead>
<tr>
<th>TABLE 1. Sensitivity of five different assays in the detection of HIV-1 in the plasma of 83 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtype</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>Recombinant</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Not treated (n = 25)</td>
</tr>
<tr>
<td>Treated (n = 58)</td>
</tr>
</tbody>
</table>

* Includes only samples for which results by all five methods are available. Very similar results were obtained when samples with missing data were included (Amplicor (Roche), 66.3%; Quantiplex (Chiron), 33.7%; NucliSens (Organon Teknika), 37.5%; PERT assay, 50.0%; p24 Ag EIA, 43.1%).

Antiretroviral treatment.
specimen subtyped as E was obviously distinct, that is, VL as determined by Amplicor was $1.20 \log_{10}$ lower than that expected from the linear regression curve, taking VL by Quantiplex as a reference. This sample was positive in the PERT assay (133 nU/ml), but was not detected by NucliSens and the Ag p24 EIA.

DISCUSSION

Of 103 HIV-1-seropositive study subjects investigated here, 72 were receiving antiretroviral therapy. This explains the relatively low percentage of specimens with detectable viral RNA. Amplicor version 1.5, equipped with the new *gag* primers SK145 and SKCC1B, proved to be the most sensitive assay in this study in which samples containing subtypes A, C, E, and recombinant viruses predominated. This differs from findings obtained using previous versions (1.0, 1.0+) of Amplicor (2–4,10).

In contrast, Quantiplex (version 2.0) and NucliSens had the lowest sensitivity, but for different reasons. With Quantiplex, the failure was not related to subtype but reflected the low intrinsic (i.e., irrespective of the number of copies indicated by the manufacturer) sensitivity of the assay. This conclusion is supported by a similar observation we made in a previous unpublished comparison of Quantiplex version 2.0 and Amplicor version...
Pearls to be suitable for the follow-up of patients infected with highly divergent HIV-1 strains, such as those constituting groups O or N. One weakness of the PERT assay as performed here lay in its failure to quantify RT activity in the presence of high titers of enzyme-inhibiting antibodies (11% of the samples in the present study). In addition, the PERT assay missed 6 samples containing various group M subtypes, including 2 with subtype B, that had VL >400 copies/ml according to Amplicor. This may reflect loss of viral particles from the pellet after centrifugation. There are other possible explanations, however. Several patients were receiving antiretroviral treatment. About 24% of patients with treatment failure are known to be resistant to nucleosidic RT inhibitors but not to protease inhibitors (27). In such patients, protease inhibitors may have hampered cleavage of the gag-pol precursor, leading to low activity of the unprocessed RT as measured by PERT assay (28).

Alternatively, inhibition of the processing of the gag precursor may have produced viral particles resistant to Triton X-100 disruption in the assay (29). In patients treated with nonnucleoside RT inhibitors, enough drug may have remained bound to the enzyme to inhibit its activity in vitro. In addition to the group O sample, the PERT assay may have uncovered 2 cases of infection by group M strains that were negative by the standard Amplicor as well as by all other assays. However, a supersensitive version of Amplicor detected low levels of HIV RNA in those 2 samples. This may represent further cases of VL underestimation with non-B subtypes. Alternatively, the few virions in these samples may have contained unusually high levels of RT (30).

The “boosted” p24 Ag EIA was more sensitive than either Quantiplex or NucliSens and was even able to detect antigenemia in the group O sample. A low level of antigenemia was also found in 3 group M samples with otherwise undetectable VL by standard techniques. Two of them, however, contained low levels of RNA as assessed by the supersensitive version of Amplicor. This discrepancy between p24 Ag and RNA measurement may result from the fact that plasma often contains a large excess (4–60 times [sometimes more], finding based on data from Piatak et al. [31]) of nonviral p24, either free or as immune complexes, over p24 as present in the viral capsid.

Correlation between p24 antigenemia and RNA levels by Amplicor was low. This could reflect the excess of nonviral over viral p24 Ag in plasma, as mentioned earlier. However, this ratio seems to be fairly constant in individual patients, as suggested by our observation that the time course of p24 Ag and HIV RNA under antiretroviral treatment are very similar (13,15,32). In addition, p24 antigenemia may have been underestimated in some
cases of non-B subtype infection if several non-B epitopes of p24 are poorly recognized by antibodies used in the assay (33).

In conclusion, Amplicor 1.5 performed best in detecting and quantifying viral RNA in cases of infection by non-B subtypes of HIV-1 group M. There was evidence of underestimation of VL in a single case of subtype E infection. Quantiplex 2.0 had a low sensitivity irrespective of subtype, but accurately quantified RNA from all group M samples with concentrations above 8000 copies/ml (Amplicor values). In contrast, NucliSens was characterized by a low sensitivity or accuracy toward some strains of subtypes A, E, F, G, or recombinant subtypes. The PERT assay could substitute to the RNA-based quantitative assays in cases of infection by group O and other highly divergent strains. The PERT assay and the “boosted” p24 Ag EIA may occasionally demonstrate the presence of viral proteins in the plasma of patients infected by non-B subtypes, when very low levels of HIV RNA are not detected by standard assays.

APPENDIX

The members of the Swiss HIV Cohort Study are M. Battegay (Chairman of the Scientific Board), E. Bernasconi, P. Bürgisser, M. Egger, P. Erb, W. Fierz, M. Flepp (Chairman of the Group “Clinics”), P. Franzoni (President of the SHCS, Centre Hospitalier Universitaire Vaudois, CH-1011-Lausanne), H.J. Furrer, P. Grob, B. Hirschel, B. Ledergerber, L. Matter (Chairman of the Group “Laboratories”), A. Meynard, M. Opravil, F. Paccaud, G. Pantaleo, L. Perrin, W. Pichler, J.-C. Piffaretti, M. Rickenbach (Head of Coordination and Data Center), C. Rudin, P. Sudre, J. Schüpbach, A. Telenti, P. Vernazza, and R. Weber.

Acknowledgments: This study was financed by the Swiss Federal Office of Public Health (grant no. 3600.010.1, project no. 223). The expert technical assistance of C. Audet, C. Chaillet, P. Gamet, M.-C. Gothuey, S. Kaing, S. Kreiner, M.-L. Meynard, M. Opravil, F. Paccaud, G. Pantaleo, L. Perrin, W. Pichler, J.-C. Piffaretti, M. Rickenbach (Head of Coordination and Data Center), C. Rudin, P. Sudre, J. Schüpbach, A. Telenti, P. Vernazza, and R. Weber.

REFERENCES

Rapid Communications

Articles accepted as Rapid Communications will normally be published within 8 weeks of acceptance. When submitting a paper for consideration as a Rapid Communication, please adhere to the following guidelines:

- Submit your paper by fax or air express service to the appropriate editor with an accompanying letter stating why the paper merits special attention.
- All figures should be submitted by overnight express.
- The paper should not exceed 4 printed pages (approximately 12 double-spaced type-written manuscript pages, including illustrations, tables, and references).
- The paper should include an abstract, key words, methods, results, discussion, and reference sections.
- The title page should include the corresponding author’s telephone and fax numbers.
- Authors will receive proofs of their article for review by fax and will be expected to return corrections by fax within **48 hours** of receipt. Changes received after this deadline will not be accepted.

Papers that are not accepted as Rapid Communications may be resubmitted as full-length articles.